6 research outputs found

    Lenia and Expanded Universe

    Full text link
    We report experimental extensions of Lenia, a continuous cellular automata family capable of producing lifelike self-organizing autonomous patterns. The rule of Lenia was generalized into higher dimensions, multiple kernels, and multiple channels. The final architecture approaches what can be seen as a recurrent convolutional neural network. Using semi-automatic search e.g. genetic algorithm, we discovered new phenomena like polyhedral symmetries, individuality, self-replication, emission, growth by ingestion, and saw the emergence of "virtual eukaryotes" that possess internal division of labor and type differentiation. We discuss the results in the contexts of biology, artificial life, and artificial intelligence.Comment: 8 pages, 5 figures, 1 table; submitted to ALIFE 2020 conferenc

    Flow-Lenia: Towards open-ended evolution in cellular automata through mass conservation and parameter localization

    Full text link
    The design of complex self-organising systems producing life-like phenomena, such as the open-ended evolution of virtual creatures, is one of the main goals of artificial life. Lenia, a family of cellular automata (CA) generalizing Conway's Game of Life to continuous space, time and states, has attracted a lot of attention because of the wide diversity of self-organizing patterns it can generate. Among those, some spatially localized patterns (SLPs) resemble life-like artificial creatures and display complex behaviors. However, those creatures are found in only a small subspace of the Lenia parameter space and are not trivial to discover, necessitating advanced search algorithms. Furthermore, each of these creatures exist only in worlds governed by specific update rules and thus cannot interact in the same one. This paper proposes as mass-conservative extension of Lenia, called Flow Lenia, that solve both of these issues. We present experiments demonstrating its effectiveness in generating SLPs with complex behaviors and show that the update rule parameters can be optimized to generate SLPs showing behaviors of interest. Finally, we show that Flow Lenia enables the integration of the parameters of the CA update rules within the CA dynamics, making them dynamic and localized, allowing for multi-species simulations, with locally coherent update rules that define properties of the emerging creatures, and that can be mixed with neighbouring rules. We argue that this paves the way for the intrinsic evolution of self-organized artificial life forms within continuous CAs

    Learning Sensorimotor Agency in Cellular Automata

    No full text
    In this blogpost, we explore the concepts of embodiment, individuality, self-maintenance and sensorimotor agency within a cellular automaton (CA) environment. Whereas those concepts are central in theoretical biology and cognitive science, it remains unclear how such behaviors can emerge in a CA-like environment made only of low-level particles and physical rules. We present a novel set of tools (based on curriculum learning, diversity search and gradient descent over a differentiable CA) to automatically learn the rules leading to the emergence of such behaviors. Our method is able to discover robust self-organizing agents with strong coherence and generalization to out-of-distribution changes, reminiscent of the robustness of living systems to maintain specific functions despite environmental and body perturbations

    Flow Lenia: Mass conservation for the study of virtual creatures in continuous cellular automata

    No full text
    Lenia is a family of cellular automata (CA) generalizing Conway's Game of Life to continuous space, time and states. Lenia has attracted a lot of attention because of the wide diversity of self-organizing patterns it can generate. Among those, some spatially localized patterns (SLPs) resemble life-like artificial creatures. However, those creatures are found in only a small subspace of the Lenia parameter space and are not trivial to discover, necessitating advanced search algorithms. We hypothesize that adding a mass conservation constraint could facilitate the emergence of SLPs. We propose here an extension of the Lenia model, called Flow Lenia, which enables mass conservation. We show a few observations demonstrating its effectiveness in generating SLPs with complex behaviors. Furthermore, we show how Flow Lenia enables the integration of the parameters of the CA update rules within the CA dynamics, making them dynamic and localized. This allows for multi-species simulations, with locally coherent update rules that define properties of the emerging creatures, and that can be mixed with neighbouring rules. We argue that this paves the way for the intrinsic evolution of self-organized artificial life forms within continuous CAs
    corecore